import os
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from math import pi
from prince import PCA
from umap.umap_ import UMAP
from sklearn.manifold import TSNE
from sklearn.preprocessing import StandardScaler
Introducción
Análisis exploratorio utilizando datos que contienen registros de sesiones de entrenamiento físico individuales, con variables fisiológicas, de rendimiento y demográficas.
Paquetes
Carga de datos
= pd.read_csv('data/gimnasio.csv', delimiter = ';', decimal = ".")
datos datos
Edad | Genero | Peso | Altura | Max_BPM | Avg_BPM | Rep_BPM | Duracion | Calorias | Entrenamiento | Grasa | Agua | Frecuencia | Experiencia | IMC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 56 | Masculino | 88.3 | 1.71 | 180 | 157 | 60 | 1.69 | 1313 | Yoga | 12.6 | 3.5 | 4 | Experto | 30.20 |
1 | 46 | Femenino | 74.9 | 1.53 | 179 | 151 | 66 | 1.30 | 883 | HIIT | 33.9 | 2.1 | 4 | Intermedio | 32.00 |
2 | 32 | Femenino | 68.1 | 1.66 | 167 | 122 | 54 | 1.11 | 677 | Cardio | 33.4 | 2.3 | 4 | Intermedio | 24.71 |
3 | 25 | Masculino | 53.2 | 1.70 | 190 | 164 | 56 | 0.59 | 532 | Fuerza | 28.8 | 2.1 | 3 | Principiante | 18.41 |
4 | 38 | Masculino | 46.1 | 1.79 | 188 | 158 | 68 | 0.64 | 556 | Fuerza | 29.2 | 2.8 | 3 | Principiante | 14.39 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
968 | 24 | Masculino | 87.1 | 1.74 | 187 | 158 | 67 | 1.57 | 1364 | Fuerza | 10.0 | 3.5 | 4 | Experto | 28.77 |
969 | 25 | Masculino | 66.6 | 1.61 | 184 | 166 | 56 | 1.38 | 1260 | Fuerza | 25.0 | 3.0 | 2 | Principiante | 25.69 |
970 | 59 | Femenino | 60.4 | 1.76 | 194 | 120 | 53 | 1.72 | 929 | Cardio | 18.8 | 2.7 | 5 | Experto | 19.50 |
971 | 32 | Masculino | 126.4 | 1.83 | 198 | 146 | 62 | 1.10 | 883 | HIIT | 28.2 | 2.1 | 3 | Intermedio | 37.74 |
972 | 46 | Masculino | 88.7 | 1.63 | 166 | 146 | 66 | 0.75 | 542 | Fuerza | 28.8 | 3.5 | 2 | Principiante | 33.38 |
973 rows × 15 columns