Variables

Variables numéricas

Resumen numérico

datos.describe()
Edad Peso Altura Max_BPM Avg_BPM Rep_BPM Duracion Calorias Grasa Agua Frecuencia IMC
count 973.000000 973.000000 973.00000 973.000000 973.000000 973.000000 973.000000 973.000000 973.000000 973.000000 973.000000 973.000000
mean 38.683453 73.854676 1.72258 179.883864 143.766701 62.223022 1.256423 905.422405 24.976773 2.626619 3.321686 24.912127
std 12.180928 21.207500 0.12772 11.525686 14.345101 7.327060 0.343033 272.641516 6.259419 0.600172 0.913047 6.660879
min 18.000000 40.000000 1.50000 160.000000 120.000000 50.000000 0.500000 303.000000 10.000000 1.500000 2.000000 12.320000
25% 28.000000 58.100000 1.62000 170.000000 131.000000 56.000000 1.040000 720.000000 21.300000 2.200000 3.000000 20.110000
50% 40.000000 70.000000 1.71000 180.000000 143.000000 62.000000 1.260000 893.000000 26.200000 2.600000 3.000000 24.160000
75% 49.000000 86.000000 1.80000 190.000000 156.000000 68.000000 1.460000 1076.000000 29.300000 3.100000 4.000000 28.560000
max 59.000000 129.900000 2.00000 199.000000 169.000000 74.000000 2.000000 1783.000000 35.000000 3.700000 5.000000 49.840000

Histogramas

datos_numericos = datos.select_dtypes("number")

for var in datos_numericos.columns:
  fig = go.Figure()
  no_plot = fig.add_trace(
    go.Histogram(x = datos.loc[:, var])
  )
  no_plot = fig.update_traces(marker_line_width = 1, marker_line_color = "white")
  fig.update_layout(title = var)
  fig.show()

Variables categóricas

datos_categoricos = datos.select_dtypes("object")

for var in datos_categoricos.columns:
  aux = datos_categoricos.loc[:, var].value_counts()
  
  fig = go.Figure()
  no_plot = fig.add_trace(
    go.Bar(x = aux.index, y = aux.to_list())
  )
  fig.update_layout(title = var)
  fig.show()